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LONG PERIOD PERTURBATIONS

OF

EARTH SATELLITE ORBITS

by

K. C. Wang

1.0 INTRODUCTION

In reference 1, Scheifele and Graf introduced a complete

first order solution for the orbital motion of a satellite

perturbed by earth oblateness. This solution was expressed

in the DSO elements. In reference 2, Bond and Scheifele

expressed the first order short period and secular J2 sol-

ution in the non-singular PSO elements. This theory was

implemented in an operational computer program named ASOP

described in reference 3. In references 4 and 5, the PSO

analytical theory was updated to include the drag effects.

In reference 6, the theory was developed to account for

the time dependent gravitational harmonics. The drag and time

dependent geupotential terms have also been included in ASOP .

Bond also extended the PSO theory to include the first

order long period terms and second order secular perturbations

due to J2 , J 3 , J4 and J5 . However, no documentation of

the equations was ever published. In reference 7, Mueller

developed a recursive theory to include the first order long

period terms and second order secular perturbations due to

zonal harmonics of any order. Mueller's theory plus the

second order J 2 theory developed by Bond have now been im-

plemented in ASOP .
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The purpose of this report is to document all the equations

involved in extending the PSO solution to include the long

periodic and second order secular effects of the zonal harmonics.
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2.0 METHOD OF SOLUTION

2.1 Notation

The DSO elements are a set of eight variables which have

the following description:

Angle Elements:

	

a l -	 true anomaly

	

a 2 = g	 argument of pericenter

	a 3 = h	 longitude of ascending node

	

a4 = Q	 time element

Action Elements:

	

_ 0	 related to two body energy
1

	02 = G	 total angular momentum

	

B = H	 z-component of the angular momentum
3

	

8
4 

= L	 total energy

These may be canonically transformed to the PSO elements

by the following relations:
Q1 = 0 + g + h

a2 = - 2(0 - G) uin (g + h)

a3 - -2(^ sin (h)

0 4	
=	 V.

(1)

pl

P3 
= 2(^ cos (h)

P4 = L
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The DSO Hamiltonian for the zonal oblateness problem is

is

C 4

given by:

F = F 0 + 
cFl + E2F2
	 (2)

where

F - 4^ _ u	 (two body contributions)
o

[( 2

F 1
 = qr 

Xr - 3 (J 2 contribution)

N
x

F 2 
= ^ X13 A , 1-1 P^^ (r3) (higher zonal harmonics)

31
t. _ 2 J 

2 
lilt`

P  are the Legendre polynomials, Re is the mean equatorial

radius of earth, and J 2 and ^
n are oblateness coefficients.

2.2 Solution Algorithm

Von Zeipel's method of elimination of the short and long

periodic terms is used. The solution first requires the trans-

formation to eliminate the short periodic terms due to J 2 .

The generating function is assumed to be of the form

S = S o + CS 1
So give the identity transformation, S 1 is so chosen that

the new Hamiltonian is no longer a function of short period

variable ^. The Hamiltonian has the form

F'(R', 9 1 ) = FO + cFl + c 2 F2

A more thorough discussion of the elimination of short

periodic terms can be found in reference 2.

An additional transformation must be made to eliminate the

long periodic terms from F'. This transformation is defined

by the generating function

S =S0+CS1

I=
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Again, 8 o gives the identify transformation, 3 1 is chosen

such that the long period variable	 g'	 is eliminated from the

WS Hamiltonian.	 The new Hamiltonian has the form

F'1(811)	 -a 	 Fit	 +	 Ott	 +	 C
2 Fit

1	 20

A more thorough discussion of the elimination of the	 J2

and higher order zonalg	 perturbation long periodic terms can

be found in references 1 and 7.

The solution algorithm can be divided into three steps:

(1)	 Initialize the primed variables

Ps 	 as
cr	

k,0 =
	

ak,0 +
	

ank,0	 ank,0
(3)

as	 as *
1	 ls	 -E	 +p k,0	 ak,0	 abak,O	 aQk,O	 k	 1,2,3,4

(2)	 Analytical integration of primed variables

a l	 of	 0	 + Ali

aZ = 02'o cos(A2 T) 	-	 p'2,0 sin(A2T)

a3	 o f	 cos(A 3 T) 	-	
p'3,0	

sin(A3T)3,0

a4 = a4 '0 	+ A 4 T

p l	 =	 p l ,0 (4)
P;	 =	 p 2,0	 c• os(A 2 T) 	+	 a

z,0	
sin(A2T)

P; = p3,0 cos"3T)	 + a3,0	 sin(A3T)

P 4	 =	l'4 ,0

The definitions or	 All	 A 2 ,	 A 3 , A 4
 
are given	 in section 3.0

of this report,	 The relation between time t and the new inde-

pendent variable T is given by dt = r 2 /q, the definition of 	 q

is also given in section 3.0

t "

-
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(3) Beek transformation

a51 + as
k	 k	 a pk

as	 as*
P k = Pk + e ao1 

+ 8a1k	 k

(5)

k - 1,2,3,4
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3.0 EQUATIONS FOR ELIMINATION OF LONG PERIODIC TERMS AND

ANALYTICAL INTEGRATION OF PRIMED VARIABLES

A detailed description of generating function S 1 and deri-
vatives of S 1 with respect to the PSO elements can be found
in Appendix F of Reference 3. In this section a detailed des-

cription of generating function S1 and derivatives of S1 with
respect to the PSO elements will be given. The derivatives

of F"2 	respect to the DSO elements will also be given.

3.1 Generating Function S1

From Reference 1 we have:

S 1	 aF1	
S	 2 8_ (2 - 3b + 6gB)e 2 b sin(2g)	 (0)

1
q

8G

S are terms related to higher order zonal perturbations.

A detailed description of S can be found in reference 7.

Now we introduce sin(g) and coo(g)

sin g) = CD (a 6 a 3 - 0 a2)

Cos (g) = CD (a6	 2a 7 + aa3)	
(?)

where

C	 2(

D = 3 G(G . H)

k

	

	 To write S1 in terms of PSO elements we introduce the
following abbreviations

Q=
Q 2 

	----2 (02 +a6)
a8	 (8)

2

p =	 _ 1(,J2 + oz) + u

32a 8 	 (9)

2a
e = (1-- ap) = QD	 (10)

R

a
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G2b = 1 - Z	

(11)
H

X	 eb#nin(g) _ Q AM + H) (0 6a 3 - a
7
a 2 )	 (12)

eb il c uc(B) = 
2 G 

2(G + H) ( a 6 a 7 + 0 2 0 3 )	 (13)

0 - e2bnin(2g) - 2,0	 (14)

Now we have
*
sl 

= 8F1 	2 f2

2
(2 - 3b + 6gB)0]	 (15)

vei q
where

g = _ 2 (a6 + a2 	 „^) + 	 (16)

8
1	 (1?)

Pg

B 2

2	
(18)

= G 3

3Gi	 1 f Cf( ugd +p )(3- b ) +B, (19)

and

d	 ( pp )	 (20)

Let
2

T = - 1 f
aL
 T8-

T  = (2 - 3b + 6gB)Ta
(21)

Tc = OT 
A

T = S + T c

then
*	 TS 1	 Jri--	 (22)

(^G q

f

lPAW1W. psum

,.	 0



as

S lk	 as	
k = 1,2,3....,8

k
From now on the subscript k represents partial derivatives

with respect to the 8 PSG elements, unless otherwise specified.

*	 1	 CNq k _
_k 	 T• 

S lk	 ^F1 T 

GG

i 
+ q
	

k	 (23)

^aG t q 

• (3Fi - fk f (^+ p) (3- b ) +[3+26k - f d+ pbk
`aG !	 2	 u	 Ik

+ f(3 - b)p k + f(I - b)u (dq k + qd £ )	 (24)

^3s	 2 

J	
3S	 `	 aS	 2	 aS

•	 Tk = rap - p T
	

{^ k + 1 b̂ - 3Ta ()1 t^ k 	ae2 ek t Va* + 2TbX) ^k

A	 `	 \

+ ax + 2Tb ^) X k - ^q T` - 6I3T a o) q k + 6T$ gOIIk	(25)

•	 Pk = 0	 for k = 1,3,4,5,7	 "

t> 2 = -2	 «2

_ 2 _311P
p 6	 11 °6

P8 = -2	 3/)

•	 qk = 0	 for k = 1,3,9,6,7

q 2 = i Q2

q5 
a 

2
l

q 4 = - 2 
(2u ^ j!?

(26)

(27)
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•	 G k	0	 for k	 1,3,4 , 7,8	 (28)

G 2 = - 02

G5=1

G6-06

•	 H  = Gk	 for k = 1,2,4,5,6,8	 (29)

H 3	- 03

H 7	 - a7

p 	 9k
• f	 - f P + q	 (30)

It

• bk = _ 2H ( " k - G k )	 (31)
G

•	 dk=2 Guy _p k 	(32)

•	 Bk = ' 3 (4Hk 	Ll Gk )	 (33)

G

•	 ek = - 2a 8 "p k	for k = 1,2,3,4,5,6,`7
2	 (34)

e8 = - 2a 8 pp - 2U1)

32(G + II)	 _	 Q
•	 Xk a (a60 s - 0702)	

2G	
Qk 4 Gk + 2(G + H) ( Gk + Hk)

k =	 4, 5, 8	 (35)

X _ 0"	 - a a )F2 +H) IQ - Q G+ --Q	(G +H )
2	 <	 7 2	 2G	 2	 (', 2 2(G + H)	 2	 2

2G

2 6+H)
X3 = (0603 - v7v2	 2G	 IQ 

3 - u G3+ 2(G
Q + N) (G3 + H3)

.4
2 FG -+I I

+ ^6	 2G
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X6 = (a6a 3
 - a7G2) 2 2G+ 

H 

IQ6 g G6 + 2 G + H) (G6 + H6)

a 3Q 2(

+	 2G

	2(G + HT 	
QX 7 - ( a 6a3 - a 7a 2 )--- Ĝ	 Q7 - -q G7 + 2(-	 )(G7 + H1)

a 2Q 2(G —+H

2G

2(
^k (a6a7 + 0

2a 3 )	 2G	 IQk - G Gk + 2(^+ H)(Gk + Gk)

k = 1,4,5,8	 (36)

2(G + H)
*2 = (a 6 a 7 + a2a 3 )	 2G	 IQ 2 - -9G G2 + 2(G+ H) (G2 + H2)

a 3Q 2(

+	 2G

2(
'^3 = (a 6a 7 + a 2 a 3 )	 2G	 IQ3 - G 

G3 + 2((G + H) (G 3 + H3)

a 2Qr2(G + 11)

+	 2G

i-	 ^6 = (^^ 6 « 7 + a 2 cJ 3 ) — 2 ---Y Q6 - ^ G6 + 2 (—G^'H)(G6 + H6)J

a 7Q 2( ry + H)

+ - 2G

	

- (a a + c a ) 2(__G + H) 
	 _q G +

(G7 + H7)

a 6Q 2(

+	 2G
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The partial derivatives of 8 with respect to p b , e2

and X can be found in Reference 3.

3.3 Derivative of F2 with Respect to DSO Elements

From Reference 1, one can find that

2	
(3?)F2	 ^ s-r, 6 ♦ ri^tt

2
6	 e (- 3b 2 + 24b - 8) + 18 92 - 	 d 2 + U,

	
(38)

9	 /

(60b 2 - 96b + 32) - 131)(24o 2 + 36)

H is the Hamiltonian of higher harmonics, see Reference T

for detailed description. Because the new Hamiltonian is a

function of only action DSO elements, from now on the sub-

script k represents partial derivative with respect to

those DSO action elements.

6k	
12 

C e 2q - e 2 g k )(- 3b 2 + 24b - 8)] + e
2 
C -6b + 24)bkJ

q	 q

bq It
	 2	 2	 2+ q-b (bkq - 2 ) -	

(dk (

P + u) + d( ekp 	 a pk (39)

p
L	 2

+ uk ) (60b - 96b + 32) + d(p + u)(120b bk - 96bk)

- (24v 2+ :36) (B 1) + iilli k ) - 24v2Bb

where

$1 = 0

6H2
B 2 = - G4

(40)

^	 43	 3
G

B 4	0



di

d2 1.

d3 0.

d4 - U(2L)-3/2

p l = - 2(P)4

vt

p2= -pl

'	 p3=0.

P 4 - -2(pu)j1(2L)-3/2

2
e l = 2L- u pl

2
e 2 = 2

-e,

e3 = 0.

e4 = - 2 ( p + Lp4)

q l = -0.5

q 2 = 1.0

q 3 = 0

q 4 = - 0.5U(2L)-	 3/2

b l = 0

b 2 = G(G)2

b 3 = ...
	

Z. (Y

b 4 = 0.

(41)

(42)

(43)

(44)

I

(45)

L l = 0

L 2 = 0

L 3 = 0
	

(46)

L4 = 1



-a.-,..,•aw ^ ,--rte"°"-ar^^a,_'E-_ :'_'°' ^^-..^...^ . ,.,. _ -,--..z_ . 4^	 r	 _ _	

-,,-/

^t
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F2k	 288 (2f
k6 + fd k ) + 9 (	

k
8k - 

9 
N )	 (47

/^ 	 3	 A 2 30
Hk 	 3p pk + De2ek + 8b b 

where

2
f 1 = u ( Up + 2q 3u

_
p)

2
f2 = - u ( up + 2q up )

f,l = 0

1 ) +4	 ^^ ful ► )C	 — 3/2 ^ ul	 1
(208 

1

(48)

(49)

Now the abbreviations A 1 , A 2 , A 3 , A4 in the expressions
of analytical integration will be given:

2
A4 = 2 f4 (b - 2/3) + u(2L) -3/2 + 288 f (2f 46 + U )

2	 q

+ q 
(H4 - 

q4 H)
	 (50)

2	 2	 q
A3 = 2 fb 3 + 288 f26 3 + y (H3 - q3)	 (51)

2
A2 = 2 [f ._(b - 2/3) + fb 2^ + 288 f (2f 2 6 + f6 2 )

'
+ q ( H2 _ q2 9) + A 

3
(52)

A i = 1 + 2 f l (b - 2/3) + 288(b 	 (21' 1 6 + r(S	 )
2

+ 9 (1 - 91 li) + A2	

(53)

q

u^
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i
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b	

^°

4.0 CONCLUSIONS

The equations described in this report have been imple-

mented into the ASOP program. The program has been checked

out and verified with results documented in reference 8. Com-

parisons with numerical integrations show the long period

theory to be accurate to within several meters after 800

revolutions. The extension of ASOP to include the long

period terms, allows the solution to maintain a high degree

of accuracy even for extremely long prediction intervals.

ru PAai ^K No.
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APPENDIX

COIIMPUTATIONAL PROCEDURE

The computational procedure for elimination of long peri-

odic terms and analytical integration of primed variables are
described below. First subroutine LONGPP(NN) (long period

perturbations) is called with parameter 0 	 it will return

initialized primed variable. During the procedure subroutine

DETERM is called to compute terms related to the higher order

harmonics. Then subroutine will be called again with para-

meter 1 , this time it will return the partial derivatives

of primed Hamiltonian with respect to the DSO elements.

Daring the procedure subroutine FPRIME is called to compute

derivatives of higher order harmonics. The sequence of com-

putation will be given below. The left column gives the

quantity to be computed, and the right column references the

equation number in the text.

LONGPP(0)

Computating Sequence
	

From Equation

(20)
(18)
(10)

(19)

(12)
(13)
(14)

subroutine DETERM

f 
	 (30)

b 
	 (31)

d 
	 (32)

j

d
B
e
aF1

aG
X

e
Sk
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r	 ,

d
B
e
Bk

dk
Pk

2
e 

q 

H 
d
k

F"2k

A1'A21A31A4

subroutine FPRIME

(39)

(47)
(50) - (53)

(20)
(18)
(10)

(40)

(41)

(42)

(43)

(44)

Computating Sequence (continued)

B 
2

e 
BF1

BG k
Xk

*k

T 

Slk
a1 ( 0 ), p'(0)

From Equation
(continued)

(33)

(34)

(24)

(35)

(36)

(25)
(23)

(3)

LONGPP(1)


